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ABSTRACT Laboratories are currently witnessing extraordinary demand globally for
sampling devices, reagents, consumables, and diagnostic instruments needed for
timely diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in-
fection. To meet diagnostic needs as the pandemic grows, the U.S. Food and Drug
Administration (FDA) recently granted several commercial SARS-CoV-2 tests Emer-
gency Use Authorization (EUA), but manufacturer-independent evaluation data are
scarce. We performed the first manufacturer-independent evaluation of the fully au-
tomated sample-to-result two-target test cobas 6800 SARS-CoV-2 (cobas) (Roche Mo-
lecular Systems, Branchburg, NJ), which received U.S. FDA EUA on 12 March 2020.
The comparator was a standardized 3-h SARS-CoV-2 protocol, consisting of RNA ex-
traction using an automated portable instrument, followed by a two-target reverse
transcription real-time PCR (RT-PCR), which our laboratory has routinely used since
January 2020 [V. M. Corman, O. Landt, M. Kaiser, R. Molenkamp, et al., Euro Surveill
25(3):pii�2000045, 2020, https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045]. co-
bas and the comparator showed overall agreement of 98.1% and a kappa value of 0.95
on an in-house validation panel consisting of 217 well-characterized retrospective
samples. Immediate prospective head-to-head comparative evaluation followed on 502
samples, and the diagnostic approaches showed overall agreement of 99.6% and a
kappa value of 0.98. A good correlation (r2 � 0.96) between cycle threshold values for
SARS-CoV-2-specific targets obtained by cobas and the comparator was observed. Our
results showed that cobas is a reliable assay for qualitative detection of SARS-CoV-2 in
nasopharyngeal swab samples collected in the Universal Transport Medium System
(UTM-RT) (Copan, Brescia, Italy). Under the extraordinary circumstances that laborato-
ries are facing worldwide, a safe diagnostic platform switch is feasible in only 48 h and
in the midst of the COVID-19 pandemic if carefully planned and executed.
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Coronavirus disease 2019 (COVID-19), a severe acute respiratory syndrome first
linked to a seafood market in Wuhan (Hubei, China) in December 2019 (1, 2), has

become a major public health concern all over the world. The pandemic is rapidly
evolving, and as of 8 April 2020, there have been 1,447,466 laboratory-confirmed cases
of COVID-19 with 83,471 deaths. The causative agent of COVID-19 is a severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2; previously known as 2019-nCoV) (2,
3), which is genetically related to but distinct from two other coronaviruses responsible
for large-scale outbreaks in the past: severe acute respiratory syndrome coronavirus
(SARS-CoV) (about 79% sequence identity) and Middle East respiratory syndrome
coronavirus (MERS-CoV) (about 50%) (2, 3).
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As evidenced in previous coronavirus epidemics caused by SARS-CoV and MERS-CoV
(4, 5), highly reliable laboratory diagnostics for COVID-19 are essential for case identi-
fication, patient management, and contact tracing. Due to the current limitations of
other laboratory approaches (viral culture, antigen testing, and serology), reverse
transcription real-time PCR (RT-PCR) remains the most suitable laboratory diagnostic
test for COVID-19 (6–8). The rapid availability of the complete genome of SARS-CoV-2
early in the pandemic (9, 10) facilitated the development of standardized laboratory
PCR protocols for COVID-19 in January 2020 (7, 8, 10–12), followed by the launch of a
range of commercial SARS-CoV-2 PCR-based assays in the last 3 months. Despite the
fact that the U.S. Food and Drug Administration (FDA) granted several commercial
SARS-CoV-2 amplification assays Emergency Use Authorization (EUA), as of 29 March
2020, no manufacturer-independent evaluation data for any commercial SARS-CoV-2
assay with U.S. FDA EUA is available in the peer-reviewed literature.

Here, we present the results of the first manufacturer-independent evaluation of the
fully automated sample-to-result two-target test cobas 6800 SARS-CoV-2 (cobas)
(Roche Molecular Systems, Branchburg, NJ, USA), which received U.S. FDA EUA on 12
March 2020. The performance of the cobas SARS-CoV-2 test was first evaluated on a
well-characterized in-house validation panel consisting of 217 samples. The comparator
was a standardized 3-h SARS-CoV-2 detection protocol, consisting of RNA extraction
using an automated portable instrument, followed by RT-PCR targeting the envelope
(E) and RNA-dependent RNA polymerase (RdRp) coronavirus genes (11). The compar-
ator protocol, which has been in routine use in our laboratory since January 2020, was
originally developed by Christian Drosten’s team (Charité Hospital, Berlin, Germany)
(11) and is recommended by the World Health Organization (WHO) (13, 14). The
protocol is currently considered the gold standard for SARS-CoV-2 detection in Europe
(6, 15). The initial evaluation on the validation panel was followed by immediate
prospective head-to-head comparison on 502 routinely collected clinical samples
against the same comparator. The entire cobas evaluation procedure followed by a
successful diagnostic platform switch lasted only 48 h and was performed in the midst
of the COVID-19 pandemic.

MATERIALS AND METHODS
In-house validation panel and comparator protocol. The well-characterized in-house validation

panel consisted of 217 undiluted 600-�l aliquots of nasopharyngeal (n � 211) or combined nasopha-
ryngeal/oropharyngeal swabs (n � 6) collected in a Universal Transport Medium System (UTM-RT)
(Copan, Brescia, Italy). The panel was designed to test sensitivity on a number of SARS-CoV-2-positive
samples, with a wide range of viral loads and specificity using SARS-CoV-2-negative samples, as well as
samples positive for other respiratory viruses related and not related to SARS-CoV-2. The clinical samples
used in the validation panel were collected from 217 individuals referred for COVID-19 testing from 7
March 2020 to 23 March 2020.

All samples in the validation panel were routinely tested for the presence of SARS-CoV-2 immediately
upon arrival in the laboratory using a standardized 3-h protocol implemented in our laboratory in early
January 2020. Briefly, swabs were vortexed for 1 min at maximum speed followed by automatic nucleic
acid extraction from 200 �l of UTM-RT conducted on a MagNa Pure Compact instrument (Roche Applied
Science, Mannheim, Germany) using a MagNA Pure Compact Nucleic Acid isolation kit I (Roche),
following the manufacturer’s instructions. Equine arteritis virus, a positive-sense single-stranded RNA
virus, was added to all clinical specimens prior to RNA extraction and served as an internal extraction and
amplification control (16). For detection of SARS-CoV-2, two-target RT-PCRs (SARS-CoV-2 specific
and pan-sarbecovirus) were performed using previously described commercially available primers and
6-carboxyfluorescein (FAM)-labeled hydrolysis probes (11). LightMix Modular SARS and Wuhan CoV
E-gene kit (Tib-Molbol, Berlin, Germany) amplifying a 76-bp-long fragment from a conserved region in
the E gene (pan-sarbecovirus target) and LightMix Modular Wuhan CoV RdRp gene kit (Tib-Molbol)
amplifying a 100-bp-long fragment from a conserved region of the RNA-dependent RNA polymerase
(RdRp) gene (a SARS-CoV-2 specific target) was used in combination with TaqMan Fast Virus 1-Step
MasterMix (Thermo Fisher Scientific, Grand Island, NY, USA). RT-PCR was performed on the StepOnePlus
real-time PCR system (Applied Biosystems, Thermo Fisher Scientific) following recommended cycling
conditions: reverse transcription at 50°C for 5 min and 95°C for 20 s, followed by 45 cycles of PCR, with
1 cycle consisting of 95°C for 3 s and 60°C for 30 s (11). Cycle threshold (CT) values for the LightMix
two-target RT-PCR (LightMix) were always set at 0.1 normalized reporter dye intensity (delta Rn). CT

values above 37.0 were considered negative. The tested sample was considered SARS-CoV-2 positive if
LightMix showed positive results for either both the E (pan-sarbecovirus target) and RdRp genes
(SARS-CoV-2-specific target) or the RdRp gene only. In the case of positivity for the E gene only, the result
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was reported as SARS-CoV-2 presumptive positive, and a follow-up sample was requested. The SARS-
CoV-2 positive-control panel needed for initial assay implementation was obtained from European Virus
Archive Global (EVAg) (www.european-virus-archive.com).

All samples included in the validation panel that tested negative using LightMix were additionally
tested for the presence of other common respiratory viruses using the commercially available Respiratory
Viruses 16-well assay (AusDagnostics, Mascot, Australia), as previously described (17, 18). The assay
utilizes a multiplex tandem PCR (MT-PCR) for enrichment of targets followed by amplification of targeted
DNA and/or RNA. The viruses targeted are influenza virus A (H1, H3, H5, and H7), influenza virus B
(Yamagata and Victoria lineages), respiratory syncytial virus (types A and B), rhinovirus (types A, B, and
C), enterovirus (types A, B, C, and D), human bocavirus 1, human parainfluenza virus (types 1 to 4), human
parechovirus (types 1 to 8), human adenovirus (groups B, C, and E and some from groups A and D),
human coronavirus (229E, HKU-1, NL63, and OC43), and human metapneumovirus (types A and B). The
assay uses a human reference gene for sample adequacy and amplification control. All samples positive
for coronaviruses using the AusDagnostics assay were further typed using four specific in-house
coronavirus type-specific one-step RT-PCRs. Briefly, 5 �l of total nucleic acid was added to 15 �l of
reaction mixture using TaqMan Fast Virus 1-Step Master Mix (Thermo Fisher Scientific, Grand Island, NY)
and four Custom TaqMan Gene Expression assays (Thermo Fisher Scientific) specific for each of the four
human coronaviruses (229E, HKU-1, NL63, and OC43). Cycling conditions were as follows: 5 min at 50°C,
20 s at 95°C, and 40 cycles, with 1 cycle consisting of 3 s at 95°C and 30 s at 60°C. Cycling conditions were
universal for all four specific RT-PCRs.

The final composition of the in-house validation panel consisting of 217 clinical samples was 64
SARS-CoV-2 positives, 17 human coronavirus (hCoV) positives (nine NL63 positives, five 229E positives,
two HKU-1 positives, and one OC43 positive), 14 human rhinovirus (hRV) positives, nine respiratory
syncytial virus (RSV) positives, eight human metapneumovirus (hMPV) positives, eight influenza virus B
positives, six influenza virus A (Flu A) positives, and one human parechovirus positive. Four samples each
contained multiple respiratory viruses: RSV and hCoV, RSV and hRV, hRV and hCoV-229E, and Flu A and
hMPV. Eighty-six samples were negative for all respiratory viruses tested. All samples included in the
validation panel were undiluted original 600- �l aliquots of UTM-RT. Aliquots were kept frozen after initial
testing at �30°C and thawed 1 h before cobas testing. The median sample storage time at �30°C was
3 days (range, 1 to 17 days). cobas testing of the in-house validation panel was performed in three runs
on the afternoon of 24 March 2020.

Head-to-head prospective comparison. Prospective cobas evaluation on 502 routinely collected
clinical samples against the same comparator (LightMix) was performed in six runs on 25 March 2020 and
26 March 2020. The nasopharyngeal (n � 489) or combined nasopharyngeal/oropharyngeal swab
(n � 13) samples used in prospective head-to-head evaluation were collected in UTM-RT from 502
individuals referred for COVID-19 testing on 25 March 2020 and 26 March 2020. The median transport
time of samples from the collection site to the laboratory was 1 h 32 min. Upon arrival in the laboratory,
swabs were vortexed for 1 min at maximum speed and two UTM-RT aliquots were prepared: 600 �l for
cobas testing and 200 �l for LightMix testing.

cobas 6800 SARS-CoV-2 testing. cobas is intended for fully automated sample-to-result qualitative
detection of SARS-CoV-2 in nasopharyngeal and oropharyngeal swab samples collected in UTM-RT or
Becton, Dickinson Universal Viral Transport System (UVT) from patients with signs and symptoms
suggestive of COVID-19. The test could be performed on either the cobas 6800 or cobas 8800 instrument
(Roche Molecular Diagnostics, Pleasanton, CA, USA). The cobas 6800 instrument consists of the sample
supply module, transfer module, processing module, and analytic module. For detection of SARS-CoV-2,
a two-target RT-PCR is used: one targeting ORF1, a nonstructural region that is unique to SARS-CoV-2
(target 1), and the second targeting a conserved region in the structural protein envelope E gene for
pan-sarbecovirus detection (target 2). The pan-sarbecovirus primers and probe should also detect the
SARS-CoV-2 virus. The test utilizes RNA internal control for sample preparation and PCR amplification
process control. Uracil-N-glycosylase is included in the PCR mix to destroy potential contaminating
amplicons from previous PCR runs. Automated data management is performed by the manufacturer’s
software, which assigns test results for all tests. The results can be reviewed directly on the system screen,
printed as a report, or transferred to a laboratory information system. According to the manufacturer’s
instructions, a tested sample was considered SARS-CoV-2 positive if cobas showed positive results either
for both ORF1 (target 1) and E (target 2) genes or for the ORF1 gene only. In the case of positivity for the
E gene only (target 2), the result should be reported as SARS-CoV-2 presumptive positive.

In our study, 600 �l of UTM-RT aliquots equilibrated to room temperature were transferred into
barcoded secondary tubes, loaded on the cobas 6800 system, and tested following the manufacturer’s
instructions. Testing was performed in batches of 94 samples plus one negative control and one positive
control.

Data analysis. Contingency tables were constructed to assess overall agreement with 95% confi-
dence intervals (95% CIs), and McNemar’s test was applied to assess differences between matched
proportions. The level of agreement between tests was assessed using kappa statistics, and simple linear
regression analysis was used for CT comparative analysis. All statistical analyses were performed using
Excel (Microsoft, Redmond, WA, USA) and R software version 3.2.5 (Free Software Foundation, Boston,
MA, USA).

RESULTS
In-house validation panel. The results of comparative evaluation of the cobas and

LightMix tests on the in-house validation panel consisting of 217 well-characterized
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samples are summarized in Table 1. Two samples were excluded from analysis due to
invalid cobas results. The diagnostic approaches showed overall agreement of 98.1%
(211/215; 95% CI, 95.0 to 99.4%), positive agreement of 95.2% (60/63; 95% CI, 85.8 to
98.8%), negative agreement of 99.3% (151/152; 95% CI, 95.8 to 100.0%), and a high
kappa value of 0.95 on 215 samples with valid results for both assays. Four discordant
results were obtained. Three samples were positive with LightMix and negative by
cobas. All three samples with LightMix-positive/cobas-negative results had very low
SARS-CoV-2 viral loads with LightMix CT values for E and RdRp genes of 33.1 and 35.7
(sample 1), 36.5 and 36.9 (sample 2), and 36.9 and 36.0 (sample 3), respectively. Before
cobas testing, these three samples with LightMix-positive/cobas-negative results were
frozen at �30°C for 12, 5, and 1 day, respectively. Sample 3 was a follow-up/control
nasopharyngeal swab of a patient that tested SARS-CoV-2 positive 14 days earlier. As
shown in Table 1, one sample (sample 4) gave cobas-positive/LightMix-negative results
with cobas CT values for ORF1 (target 1) and E (target 2) genes of 33.3 and 35.9,
respectively.

Head-to-head prospective comparison. The results of head-to-head comparative
evaluation of the cobas and LightMix tests on 502 samples prospectively collected from
the same number of individuals are summarized in Table 2. One sample was excluded
from analysis due to an invalid cobas result. The diagnostic approaches showed overall
agreement of 99.6% (499/501; 95% CI, 98.4 to 99.9%), positive agreement of 100.0%
(63/63; 95% CI:, 92.8 to 100.0%), negative agreement of 99.5% (436/438; 95% CI, 98.2 to
99.9%) and a high kappa value of 0.98 on 501 samples with valid results of both assays.
Two discordant results were obtained. One sample (sample 5) with a cobas-positive/
LightMix-negative result had a very low SARS-CoV-2 viral load with cobas CT values for
ORF1 (target 1) and E (target 2) genes of 33.8 and 36.5, respectively. According to the
cobas manufacturer’s instructions, sample 5 is considered SARS-CoV-2 positive. Sample
5 was a follow-up/control nasopharyngeal swab of a patient that tested SARS-CoV-2
positive using LightMix 15 days earlier. One sample (sample 6) with a cobas presump-
tive positive/LightMix-negative result had a very low SARS-CoV-2 viral load with cobas
CT values for the E gene (target 2) of 38.1, whereas amplification for the ORF1 gene
(target 1) showed a negative result. According to the cobas manufacturer’s instructions,

TABLE 1 Results of comparative evaluation of the cobas 6800 SARS-CoV-2 and standardized SARS-CoV-2 detection protocol on validation
panela

LightMix
result

No. of samples with the following result
by cobas 6800:

Overall agreement
(%) (95% CI)

Kappa value
(95% CI)

P value by
McNemar’s testPositive Negative Total

Positive 60 3 63

98.1 (95.0–99.4) 0.95 (0.91–1.00) 0.617Negative 1 151 152

Total 61 154 215
aResults of comparative evaluation of the cobas 6800 SARS-CoV-2 (cobas) and standardized SARS-CoV-2 detection protocol consisting of RNA extraction using the
MagNA Pure Compact instrument followed by RT-PCR targeting the E and RdRp coronavirus genes (LightMix) on an in-house validation panel consisting of 217
samples. Two samples were excluded from analysis due to an invalid cobas result. Interpretation of discordant results is given in Results and Discussion.

TABLE 2 Results of prospective head-to-head comparative evaluation of the cobas 6800 SARS-CoV-2 and standardized SARS-CoV-2
detection protocola

LightMix
result

No. of samples with the following result
by cobas 6800:

Overall agreement
(%) (95% CI)

Kappa value
(95% CI)

P value by
McNemar’s testPositive Negative Total

Positive 63 0 63

99.6 (98.4–99.9) 0.98 (0.96–1.00) 0.480Negative 2 436 438

Total 65 436 501
aResults of prospective head-to-head comparative evaluation of the cobas 6800 SARS-CoV-2 (cobas) and standardized SARS-CoV-2 detection protocol consisting of
RNA extraction using the MagNA Pure Compact instrument followed by RT-PCR targeting the E and RdRp coronavirus genes (LightMix) on 502 samples. One sample
was excluded from analysis due to an invalid cobas result. Interpretation of discordant results is given in Results and Discussion.
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sample 6 was considered SARS-CoV-2 presumptive positive. Sample 6 was also a
follow-up/control nasopharyngeal swab obtained from a patient that tested SARS-
CoV-2 positive using LightMix 19 days earlier.

As shown in Fig. 1, a remarkably good correlation (r2 � 0.96) between CT values for
SARS-CoV-2-specific targets obtained by LightMix (RdRp gene) and cobas (ORF1; target
1) was observed on 63 samples positive for SARS-CoV-2 by both diagnostic approaches
in the prospective head-to-head evaluation part of our study.

Additional data supporting the informed decision for a diagnostic approach
switch. After extensive evaluation, our laboratory implemented LightMix-based SARS-
CoV-2 testing on 17 January 2020. Routine SARS-CoV-2 testing started on 27 January
2020, and the first positive sample was detected on 4 March 2020 after testing 353
routine samples. As of 8 April 2020, a total of 30,669 SARS-CoV-2 tests have been
performed in Slovenia (15,330 tests per million inhabitants), 1,103 laboratory-confirmed
cases of COVID-19 have been detected, and 40 deaths have been reported. During a
1-month period before implementation of cobas in routine SARS-CoV-2 testing on 26
March 2020, the workforce needed for SARS-CoV-2 testing using the LightMix approach
at our institution gradually increased from a single technician to a total of 14 highly
skilled technicians working in two six-member laboratory teams covering 7 a.m. to
11 p.m. shifts plus two technicians for an 8-h night shift. At the time of the diagnostic
approach switch, using the LightMix approach, the COVID-19 diagnostic team was able
to process 600 to 700 samples per day with an average bench time of 9.6 min per
sample. The approximate bench time per sample for cobas testing of 600 to 700
samples per day is around one-tenth of the time needed previously. From 27 March
2020 until 7 April 2020, a total of 2,296 samples have been routinely tested using cobas
in 28 runs with a total of 3 samples showing invalid results (1 in 765). All invalid cobas
results noticed in our laboratory were caused by either clots/mucus/physical contam-
ination detected by the instrument during sample aspiration or insufficient sample
volume identified in sample tubes/processing plates.

DISCUSSION

In addition to the unprecedented health and economic impact of the COVID-19
pandemic, we are witnessing extraordinary demand on a global scale for personal

FIG 1 Correlation between cycle threshold (CT) values obtained by LightMix Modular Wuhan CoV (RdRp gene –
SARS-CoV-2-specific target) and cobas 6800 SARS-CoV-2 (target 1 – ORF1 – SARS-CoV-2-specific target) in the
prospective head-to-head evaluation performed on 502 samples. CT values for the LightMix assay were always set
at 0.1 normalized reporter dye intensity (delta Rn). Linear regression of the CT values was performed using samples
positive for SARS-CoV-2 by both diagnostic approaches (n � 63). The r2 correlation value is indicated.
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protective equipment and medical devices such as ventilators as well as sampling
devices, reagents, consumables, and diagnostic instruments needed for timely diagno-
sis of SARS-CoV-2 infection. To meet diagnostic needs and as the pandemic grows,
the U.S. FDA recently dramatically expanded enforcement discretion to speed up
COVID-19 test access, resulting in granting EUA to 30 different SARS-CoV-2 com-
mercial assays and 5 laboratory developed tests as of 8 April 2020 (https://www.fda.gov/
medical-devices/emergency-situations-medical-devices/emergency-use-authorizations
#covid19ivd). However, to the best of our knowledge, as of 29 March 2020, no
manufacturer-independent evaluation data for any commercial SARS-CoV-2 assay with
the U.S. FDA EUA is available in peer-reviewed literature. EUA-granted assays range
from those with rapid turnaround time allowing point-of-care testing to those per-
formed on high-throughput diagnostic platforms allowing for large numbers of pa-
tients to be tested in a reasonable time frame.

cobas 6800 is a fully automated instrument allowing sample-to-result qualitative
and quantitative detection of several microorganisms. A range of cobas 6800 assays
have been approved by the U.S. FDA in recent years (https://www.fda.gov/medical
-devices/vitro-diagnostics/nucleic-acid-based-tests). Due to the high demand for SARS-
CoV-2 testing, problems in further scaling up testing using the LightMix approach, the
limited and delayed supply of reagents needed for the LightMix approach, and the
availability of cobas 6800 in our laboratory, we decided to evaluate the cobas 6800
SARS-CoV-2 test as soon as it become commercially available. Due to production
problems with the cobas 6800/8800 Buffer Negative Control kit, the first reagents
arrived in the laboratory with 7-day delay on 24 March 2020. In the meantime, a
well-characterized in-house validation panel was prepared and immediately tested with
cobas in three runs on the afternoon of 24 March 2020. cobas showed excellent overall
agreement with the comparator LightMix on the in-house validation panel with four
discordant results (Table 1). All three samples with LightMix-positive/cobas-negative
results had very low SARS-CoV-2 viral loads and were most probably cobas negative
due to degradation of SARS-CoV-2 RNA during storage/freezing/thawing. Due to the
encouraging results obtained on the in-house validation panel, we started immediate
prospective head-to-head evaluation of cobas on 502 routinely collected clinical sam-
ples against the same comparator. As in the first part of the study, both diagnostic
approaches showed excellent overall agreement and a high kappa value also on
prospectively collected samples, with only two discordant results (Table 2). Both
cobas-positive/LightMix-negative samples had a very low SARS-CoV-2 viral load, sug-
gesting slightly higher analytical sensitivity of cobas over the LightMix approach. On
the basis of favorable results obtained in both the retrospective and prospective parts
of our study, we decided to start routine SARS-CoV-2 testing with cobas on 26 March
2020. The entire cobas evaluation procedure followed by a successful diagnostic
platform switch lasted only 48 h.

Apart from the commercially available cobas 6800 SARS-CoV-2 test that was eval-
uated in this study, the cobas 6800 instrument can also be used for SARS-CoV-2
detection following a recently published laboratory-developed protocol and the open
channel (utility channel) of the cobas 6800 instrument (19). In this study, authors
demonstrated good analytical performance of an adapted SARS-CoV-2 assay on swab
samples with the limit of detection comparable to that of the LightMix approach used
in our evaluation (19). A similar laboratory-developed open-access protocol was also
recently published for another U.S. FDA-approved high-throughput instrument, Pan-
ther Fusion (Hologic, Marlborough, MA) (20).

In conclusion, the results of the first manufacturer-independent evaluation of cobas
performed on a well-characterized in-house validation panel consisting of 217 samples
followed by immediate prospective head-to-head comparison on 502 routine samples
against the current diagnostic standard showed that cobas is a reliable assay for
qualitative detection of SARS-CoV-2 in nasopharyngeal and combined nasopharyngeal/
oropharyngeal swab samples collected in the UTM-RT system. Our study showed that,
under the extraordinary circumstances that laboratories are currently facing worldwide,
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a safe diagnostic platform switch is feasible in only 48 h and in the midst of the
COVID-19 pandemic, if carefully planned and executed.
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